
RespectValidation
Respect/Validation 是 PHP 中功能强大的数据验证库，支持链式调用、多规则组合、自定义验证规则
等特性，适用于表单验证、API 参数校验等场景。以下是其核心使用方法：

一、安装

通过 Composer 安装：

composer require respect/validation

二、基础使用

1. 简单验证（单个规则）

use Respect\Validation\Validator as v;
// 验证邮箱格式
$email = 'test@example.com';
v::email()->validate($email); // 返回 true/false
// 验证失败时抛出异常
try {
 v::email()->assert($email); // 验证通过无返回，失败则抛 ValidationException
} catch (Respect\Validation\Exceptions\ValidationException $e) {
 echo $e->getMessage(); // 输出错误信息
}

2. 链式验证（多规则组合）

// 验证密码：长度6-20位，包含字母和数字
$password = 'Pass1234';
v::length(6, 20)
 ->alnum()
 ->containsLetter()

 ->containsDigit()
 ->assert($password);

三、常用验证规则

1. 数据类型验证

v::stringType(); // 字符串类型
v::intVal(); // 整数类型
v::floatVal(); // 浮点类型
v::boolVal(); // 布尔类型
v::arrayVal(); // 数组类型

2. 字符串验证

v::email(); // 邮箱格式
v::url(); // URL格式
v::regex('/^[a-z]+$/'); // 正则匹配
v::length(3, 10); // 长度3-10位
v::notEmpty(); // 非空
v::lowercase(); // 全小写
v::uppercase(); // 全大写

3. 数值验证

v::numericVal(); // 数值类型
v::between(18, 60); // 数值在18-60之间
v::positive(); // 正数
v::negative(); // 负数
v::equals(100); // 等于100

4. 数组 / 集合验证

v::arrayVal()->length(2); // 数组长度为2
v::contains('apple'); // 包含元素'apple'
v::key('username', v::stringType()); // 数组包含'username'键且值为字符串

5. 日期验证

v::date(); // 有效日期（如'2024-01-01'）
v::date('Y-m-d'); // 指定日期格式
v::between('2020-01-01', '2024-12-31'); // 日期范围

四、复杂验证场景

1. 表单验证（多字段）

// 验证用户注册表单
$userData = [
 'username' => 'test_user',
 'email' => 'test@example.com',
 'password' => 'Pass1234',
 'age' => 25
];
v::key('username', v::stringType()->length(3, 20))
 ->key('email', v::email())
 ->key('password', v::length(6, 20)->alnum())
 ->key('age', v::intVal()->between(18, 60))
 ->assert($userData);

2. 条件验证（when 规则）

// 如果是学生，验证学号；否则验证工号
$person = [
 'type' => 'student',
 'id' => 'S12345'
];
v::key('type', v::equals('student'))

 ->when(
 v::key('type', v::equals('student')),
 v::key('id', v::regex('/^S\d+$/')), // 学生学号规则
 v::key('id', v::regex('/^W\d+$/')) // 员工工号规则
)
 ->assert($person);

3. 自定义验证规则

// 自定义规则：验证是否为偶数
v::with('MyValidationRules'); // 注册自定义规则命名空间
class MyValidationRules
{
 public static function even($input)
 {
 return $input % 2 === 0;
 }
}
v::even()->assert(4); // 验证通过

五、错误信息处理

1. 获取详细错误信息

try {
 v::email()->assert('invalid-email');
} catch (Respect\Validation\Exceptions\ValidationException $e) {
 // 获取所有错误信息（数组）
 print_r($e->getMessages());

 // 获取格式化错误信息
 echo $e->getFullMessage();
}

2. 自定义错误消息

v::email()->setName('邮箱')->assert('invalid-email');
// 错误信息："邮箱必须是有效的电子邮件地址"

六、结合 MVC 控制器使用

// 控制器中验证表单提交
public function register(Request $request)
{
 $data = $request->post();

 try {
 // 验证规则
 v::key('username', v::stringType()->notEmpty()->length(3, 20))
 ->key('email', v::email())
 ->key('password', v::length(6, 20)->alnum())
 ->assert($data);

 // 验证通过，执行注册逻辑
 $this->userModel->create($data);
 $this->redirect('/login');
 } catch (ValidationException $e) {
 // 验证失败，返回错误信息到视图
 $this->view('register', [
 'errors' => $e->getMessages()
]);
 }
}

核心优势
1. 链式调用：规则组合简洁直观；

2. 丰富的内置规则：覆盖大部分验证场景；

3. 灵活的错误处理：支持自定义消息和多语言；

4. 可扩展性：轻松实现自定义验证规则。

Respect/Validation 能显著简化 MVC 项目中的数据验证逻辑，提升代码可读性和健壮性。

（注：文档部分内容可能由 AI 生成）

